1998年1月27日,19歲學生羅蘭·克拉克森發現了最大的素數23021377-1。這個數全部寫出來后有909526位,它是使用了由喬治·沃特曼與斯科特·庫羅斯基寫的軟件而跟蹤得來的。它是第37個“默森素數”?死松菙登熬W上默森素數研究會”的自愿投稿人之一,而他使用的只是普通的200MHz奔騰臺式電腦。
相關資料:
質數(又稱為素數)
1.就是在所有比1大的整數中,除了1和它本身以外,不再有別的約數,這種整數叫做質數或素數。還可以說成質數只有1和它本身兩個約數。這終規只是文字上的解釋而已。能不能有一個代數式,規定用字母表示的那個數為規定的任何值時,所代入的代數式的值都是質數呢?
2.素數是這樣的整數,它除了能表示為它自己和1的乘積以外,不能表示為任
何其它兩個整數的乘積。
質數的概念
一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數)。例如 2,3,5,7 是質數,而 4,6,8,9 則不是,后者稱為合成數或合數。從這個觀點可將整數分為兩種,一種叫質數,一種叫合成數。(1不是質數,也不是合數)著名的高斯「唯一分解定理」說,任何一個整數?梢詫懗梢淮|數相乘的積。
質數的奧秘
質數的分布是沒有規律的,
有人做過這樣的驗算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有這樣一個公式:設一正數為n,則n^2+n+41的值一定是一個質數。這個式子一直到n=39時,都是成立的。但n=40時,其式子就不成立了,因為40^2+40+41=1681=41*41。
說起質數就少不了哥德巴赫猜想,和著名的“1+1”
哥德巴赫猜想 :(Goldbach Conjecture)
內容為“所有的大于2的偶數,都可以表示為兩個素數”
這個問題是德國數學家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在給大數學家歐拉的信中提出的,所以被稱作哥德巴赫猜想。同年6月30日,歐拉在回信中認為這個猜想可能是真的,但他無法證明。從此,這道數學難題引起了幾乎所有數學家的注意。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的“明珠”!坝卯敶Z言來敘述,哥德巴赫猜想有兩個內容,第一部分叫做奇數的猜想,第二部分叫做偶數的猜想。奇數的猜想指出,任何一個大于等于7的奇數都是三個素數的和。偶數的猜想是說,大于等于4的偶數一定是兩個素數的和!保ㄒ浴陡绲掳秃詹孪肱c潘承洞》)
哥德巴赫猜想貌似簡單,要證明它卻著實不易,成為數學中一個著名的難題。18、19世紀,所有的數論專家對這個猜想的證明都沒有作出實質性的推進,直到20世紀才有所突破。直接證明哥德巴赫猜想不行,人們采取了“迂回戰術”,就是先考慮把偶數表為兩數之和,而每一個數又是若干素數之積。如果把命題"每一個大偶數可以表示成為一個素因子個數不超過a個的數與另一個素因子不超過b個的數之和"記作"a+b",那么哥氏猜想就是要證明"1+1"成立。
1900年,20世紀最偉大的數學家希爾伯特,在國際數學會議上把“哥德巴赫猜想”列為23個數學難題之一。此后,20世紀的數學家們在世界范圍內“聯手”進攻“哥德巴赫猜想”堡壘,終于取得了輝煌的成果。
到了20世紀20年代,有人開始向它靠近。1920年,挪威數學家布爵用一種古老的篩選法證明,得出了一個結論:每一個比6大的偶數都可以表示為(9+9)。這種縮小包圍圈的辦法很管用,科學家們于是從(9十9)開始,逐步減少每個數里所含質數因子的個數,直到最后使每個數里都是一個質數為止,這樣就證明了“哥德巴赫猜想”。
1920年,挪威的布朗(Brun)證明了 “9+9 ”。
1924年,德國的拉特馬赫(Rademacher)證明了“7+7 ”。
1932年,英國的埃斯特曼(Estermann)證明了 “6+6 ”。
1937年,意大利的蕾西(Ricei)先后證明了“5+7 ”, “4+9 ”, “3+15 ”和“2+366 ”。
1938年,蘇聯的布赫 夕太勃(Byxwrao)證明了“5+5 ”。
1940年,蘇聯的布赫 夕太勃(Byxwrao)證明了 “4+4 ”。
1948年,匈牙利的瑞尼(Renyi)證明了“1+c ”,其中c是一很大的自然數。
1956年,中國的王元證明了 “3+4 ”。
1957年,中國的王元先后證明了 “3+3 ”和 “2+3 ”。
1962年,中國的潘承洞和蘇聯的巴爾巴恩(BapoaH)證明了 “1+5 ”, 中國的王元證明了“1+4 ”。
1965年,蘇聯的布赫 夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)證明了“1+3 ”。
1966年,中國的陳景潤證明了 “1+2 ”[用通俗的話說,就是大偶數=素數+素數*素數或大偶數=素數+素數(注:組成大偶數的素數不可能是偶素數,只能是奇素數。因為在素數中只有一個偶素數,那就是2。)]。
其中“s + t ”問題是指: s個質數的乘積 與t個質數的乘積之和
20世紀的數學家們研究哥德巴赫猜想所采用的主要方法,是篩法、圓法、密率法和三角和法等等高深的數學方法。解決這個猜想的思路,就像“縮小包圍圈”一樣,逐步逼近最后的結果。
由于陳景潤的貢獻,人類距離哥德巴赫猜想的最后結果“1+1”僅有一步之遙了。但為了實現這最后的一步,也許還要歷經一個漫長的探索過程。有許多數學家認為,要想證明“1+1”,必須通過創造新的數學方法,以往的路很可能都是走不通的。
英文的
prime number: a number that haas exact 2 foctor
質數的性質
被稱為“17世紀最偉大的法國數學家”費爾馬,也研究過質數的性質。他發現,設Fn=2^(2^n)+1,則當n分別等于0、1、2、3、4時,Fn分別給出3、5、17、257、65537,都是質數,由于F5太大(F5=4294967297),他沒有再往下檢測就直接猜測:對于一切自然數,Fn都是質數。但是,就是在F5上出了問題!費爾馬死后67年,25歲的瑞士數學家歐拉證明:F5=4294967297=641*6700417,并非質數,而是合數。
更加有趣的是,以后的Fn值,數學家再也沒有找到哪個Fn值是質數,全部都是合數。目前由于平方開得較大,因而能夠證明的也很少,F在數學家們取得Fn的最大值為:n=1495。這可是個超級天文數字,其位數多達10^10584位,當然它盡管非常之大,但也不是個質數。質數和費爾馬開了個大玩笑!
【求大質數的方法】
研究發現質數除2以外都
人們找出的幾個超大質數中有遺漏,那么就可以用此方法求出那些遺漏的數,不過需要很長時間!
這對于“孿生素數”有幫助喔!
上面這個算法比較垃圾,對于求很大的素數效率低下,這個很大的素數可以用概率算法求。
求素數,請用《公理與素數計算》。這種方法用不著將所有奇數都寫出來,而且計算出來的素數可以做到一個不漏。對于合數的刪除,也不是涉及所有奇合數,刪除是準確無誤的,刪除奇合數后剩余的全部是素數。如:對奇素數3的倍數的數進行刪除,在整個自然數中只須刪除一個數;對素數5的倍數的數進行刪除,在整個自然數中只須刪除2個數;對素數7的倍數的數進行刪除,在整個自然數中只須刪除8個數;以此類推,如果哪位老師能夠將它用電腦編成程序,對計算素數有很大的幫助。
【質數的個數】
有近似公式: x 以內質數個數約等于 x / ln(x)
ln是自然對數的意思。
準確的質數公式尚未給出。
10 以內共 4 個質數。
100 以內
1000 以內共 168 個質數。
10000 以內共 1229 個質數。
100000 以內共 9592 個質數。
1000000 以內共 78498 個質數。
10000000 以內共 664579 個質數。
100000000 以內共 5761455 個質數。
......
【求質數的方法】
古老的篩法可快速求出100000000以內的所有素數。
篩法,是求不超過自然數N(N>1)的所有質數的一種方法。據說是古希臘的埃拉托斯特尼(Eratosthenes,約公元前274~194年)發明的,又稱埃拉托斯特尼篩子。
具體做法是:先把N個自然數按次序排列起來。1不是質數,也不是合數,要劃去。第二個數2是質數留下來,而把2后面所有能被2整除的數都劃去。2后面第一個沒劃去的數是3,把3留下,再把3后面所有能被3整除的數都劃去。3后面第一個沒劃去的數是5,把5留下,再把5后面所有能被5整除的數都劃去。這樣一直做下去,就會把不超過N的全部合數都篩掉,留下的就是不超過N的全部質數。因為希臘人是把數寫在涂臘的板上,每要劃去一個數,就在上面記以小點,尋求質數的工作完畢后,這許多小點就像一個篩子,所以就把埃拉托斯特尼的方法叫做“埃拉托斯特尼篩”,簡稱“篩法”。(另一種解釋是當時的數寫在紙草上,每要劃去一個數,就把這個數挖去,尋求質數的工作完畢后,這許多小洞就像一個篩子。)